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Abstract—We analyze the growth of dataset sizes used in
machine learning for natural language processing and computer
vision, and extrapolate these using two methods; using the histor-
ical growth rate and estimating the compute-optimal dataset size
for future predicted compute budgets. We investigate the growth
in data usage by estimating the total stock of unlabeled data
available on the internet over the coming decades. Our analysis
indicates that the stock of high-quality language data will be
exhausted soon; likely before 2026. By contrast, the stock of low-
quality language data and image data will be exhausted only
much later; between 2030 and 2050 (for low-quality language)
and between 2030 and 2060 (for images). Our work suggests
that the current trend of ever-growing ML models that rely
on enormous datasets might slow down if data efficiency is not
drastically improved or new sources of data become available.

KEY TAKEAWAYS

• We project the growth of training datasets for vision and
language models using both the historical growth rate and
the compute-optimal dataset size given current scaling
laws and existing compute availability estimates (Section
III-A).

• We also project the growth in the total stock of unlabeled
data, including high-quality language data (Section III-B).

• Language datasets have grown exponentially by more
than 50% per year, and contain up to 2e12 words as of
October 2022. (section IV-A)

• The stock of language data currently grows by 7% yearly,
but our model predicts a slowdown to 1% by 2100. This
stock is currently between 7e13 and 7e16 words, which
is 1.5 to 4.5 orders of magnitude larger than the largest
datasets used today (Section IV-B1).

• Based on these trends, we will likely run out of language
data between 2030 and 2050 (Section IV-D).

• However, language models are usually trained on high-
quality data. The stock of high-quality language data is
between 4.6e12 and 1.7e13 words, which is less than
one order of magnitude larger than the largest datasets
(Section IV-B2).

• We are within one order of magnitude of exhausting high-
quality data, and this will likely happen between 2023 and
2027 (Section IV-D).

• Projecting the future growth of image datasets is less
obvious than for language, because the historical trend
stopped in the past four years1. However, the growth rate
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1New models appeared which use much more data than what was the case
in the previous years, see [1].

seems likely to be around 18% to 31% per year. The
current largest dataset is 3e9 images (Section IV-A).

• The stock of vision data currently grows by 8% yearly,
but will eventually slow down to 1% by 2100. It is
currently between 8.11e12 and 2.3e13 images – three to
four orders of magnitude larger than the largest datasets
used today (Section IV-C).

• Projecting these trends highlights that we will likely run
out of vision data between 2030 to 2070 (Section IV-D).

I. INTRODUCTION

Training data is one of the three main factors that determine
the performance of Machine Learning (ML) models, together
with algorithms and compute. Current understanding of scaling
laws suggests that future ML capabilities will strongly depend
on the availability of large amounts of data to train large
models [2, 3].

Previous work compiled a database of more than 200 train-
ing datasets used in ML models [1] and estimated historical
rates of growth in dataset size for vision and language models.

To learn about the limits of this trend, we developed
probabilistic models to estimate the total amount of image and
language data that will be available between 2022 and 2100.
Based on our dataset size trend projections, we then estimated
the limit of these trends due to the exhaustion of available
data.

II. PREVIOUS WORK

Stock of data: There have been several estimates of the size
of the internet and the total amount of information available
[4, 5, 6]. However, in recent years, these types of reports
have not provided breakdowns of different data modalities (for
example into the number of images, videos, or blog posts), and
instead aggregated all data modalities into a single number in
bytes [7].

Data bottleneck in ML: In [8], the author estimated the
stock of high-quality data and used the scaling laws [3] to
predict that the stock of data is not enough to scale language
models more than 1.6x the size of DeepMind’s Chinchilla lan-
guage model [3] using compute-optimal scaling. We improve
this analysis by creating explicit models of dataset size growth
and more detailed estimations of the stock of data over time,
which allows us to predict the date that datasets will become
as large as the total stock of data.

ar
X

iv
:2

21
1.

04
32

5v
1 

 [
cs

.L
G

] 
 2

6 
O

ct
 2

02
2



(a) Projections for low-quality
language data

(b) Projections for high-quality
language data

(c) Projections for vision data

Fig. 1: Projections of data usage. Each graph shows two extrapolations of data usage, one from past trends and one from compute availability
estimations plus scaling laws. Both projections are constrained to be lower than the estimated data stock. In all three cases, this constraint
causes a slowdown in data usage growth.

III. METHODS

A. Projecting growth in training dataset sizes
Previous work compiled historical trends of dataset size

work for different application domains2 [1].
Our definition of dataset size is the number of unique

datapoints on which the model is trained. The definition of
"datapoint" is different for each domain. In particular, for
language data we define a datapoint as a word, and for image
data we define a datapoint as an image. Additional details on
this choice of dataset size metric can be found in [1].

Using the historical trend, together with the size of the
largest datasets used to date, we can estimate the future
evolution of dataset sizes. However, this projection naively
assumes that the past trend will be sustained indefinitely. In
reality, there are constraints on the amount of data that a model
can be trained on. One of the most important constraints is
compute availability. This is because increasing the amount of
training data for a given model requires additional compute,
and the amount of compute that can be used is limited by
the supply of hardware and the cost of buying or renting that
hardware.

To account for this constraint, we make another projection,
based on compute availability and the compute-optimal dataset
size. Scaling laws can be used to predict the optimal balance
of model size and dataset size for a given compute budget
(measured in FLOP) [2, 3]. Concretely, the optimal dataset
size is proportional to the square root of the compute budget
(D

√
C).

Previous work [9], projected the available compute to the
largest training into the future3. We use those projections

2The domains that were included were vision, language, recommendation,
speech, drawing, and games. However, there is only significant data for vision
and language.

3Note that this projection has a wide range of uncertainty and includes
scenarios in which spending on compute grows orders of magnitude over
current levels, up to 1% of GDP.

to estimate the optimal training dataset size that will be
achievable in each future year.

B. Estimating data accumulation rates
In recent years, unsupervised learning has successfully

created foundation models that can be fine-tuned for several
tasks using small amounts of labeled data and large amounts
of unlabeled data. In addition, unsupervised models have also
proved able to generate valuable pseudo-labels for unlabeled
data [10]. For these reasons, we will focus on the stock and
accumulation rates of unlabeled data, even if the amount of
labeled data is much lower4.

Before delving into the details, let us consider a theoretical
framework of what we expect the data accumulation rate to
look like. The vast majority of data is user-generated and is
stored in social media platforms, blogs, forums, etc. There are
three factors that determine how much content is produced in a
given period: human population, internet penetration rate, and
the average amount of data produced by each internet user.

Human population has been extensively studied so we
use the standard United Nations projections [11]. Internet
penetration (the percentage of the population who uses the
Internet) grows as an S-curve from 0% in 1990 to 50% in
2018 to over 60% today [12]. We model this as a sigmoid
function of time and fit it to the data in [12].

The average amount of data produced by users changes over
geography and time according to internet usage trends, and is
not easy to analyze5. For simplicity, let us assume the average
amount of data produced by users is constant over time.

This model of Internet population (the number of Internet
users) closely matches the historical number of Internet users

4Note that while transfer learning vastly reduces the need for labeled data,
it does not eliminate it. In addition, labeled data is usually much harder to
acquire than unlabeled data. Therefore, labeled data might turn out to be a
bottleneck even though it is required in smaller quantities.

5Doing so would require taking into account the effects of culture, demog-
raphy and socioeconomic development in different countries and times, which
is out of the scope of this paper.



Fig. 2: Real and projected evolution of internet users.

(Figure 2). To test its ability to predict Internet data generation,
we conducted an empirical test by fitting this model to Reddit
submission data. This model fit the data better than both
exponential and sigmoid models (see Appendix C).

C. High-quality data
We have developed a model for the accumulation rate of

user-generated content. However, for language data, this kind
of content tends to be of lower quality than more specialized
language data like books or scientific papers. Models trained
on the latter kind of data perform better [13], so it is common
practice to use it for training language models [14, 15, 3].
We have little insight on data quality for image models nor
how to identify high-quality image data6, so we will focus on
language in this section.

Because of our limited insights and unawareness of research
into the tradeoffs involved in using high- versus low-quality
data, we provide estimates and growth projections for both
high- and low-quality data separately. To identify high-quality
date we defer to the expertise of practitioners and look at
the composition of the datasets used to train large language
models. The most common sources in these datasets are books,
news articles, scientific papers, Wikipedia, and filtered web
content78.

A common property of these sources is that they contain
data that has passed usefulness or quality filters. For example,
in the case of news, scientific articles, or open-source code
projects, the usefulness filter is imposed by professional stan-
dards (like peer review). In the case of Wikipedia, the filter is

6Other than very crude metrics like image resolution. For example, com-
paring robustness across distributional shifts of image-text models trained on
different commonly-used datasets shows that there is no single dataset that
induces better robustness across all shifts [16]

7Filtered web content is regular web content selected using a proxy measure
of quality, like the number of upvotes of a link shared in Reddit. The
MassiveWeb and WebText datasets were built in this way.

8Other common sources are GitHub (for code), subtitles and transcriptions
of educational videos, podcasts or parliamentary sessions, and emails.

standing the test of time in a community of dedicated editors.
In the case of filtered web content, the filter is receiving
positive engagement from many users. While imperfect, this
property can help us identify additional sources of high-quality
data, so we will use it as our working definition of high-quality
data.

Some high-quality data, such as filtered web content and
Wikipedia, is generated by dedicated internet contributors.
This means we can use the same model developed for general
user-generated content.

However, other sources of high-quality data are generated
by subject matter experts (such as scientists, authors, and open-
source developers). In this case, the generation rate is not
determined by human population or internet penetration but
by the size of the economy and the share of the economy
devoted to creative sectors (like science and art).

OECD countries have spent roughly 2% of their GDP on
R&D over the past 20 years [17]. This number is increasing
slowly, but we will assume it is mostly constant. So the data
accumulation rate should be roughly proportional to the size of
the world economy, which grows around 4% each year. This
prediction is consistent with the observed growth in scientific
publications [18].

We estimate the proportion of these two classes of data (ded-
icated contributors and professionals) in high-quality datasets
by looking at existing datasets and classifying each of their
subcomponents into a class.

D. Limitations
There are a number of reasons why our estimates of the

growth rate of dataset sizes might be incorrect:
• There might be less need for data in the future to achieve

equivalent levels of performance. This is particularly
likely since there have previously been large increases
in data efficiency in other domains[19, 8].

• Compute availability might grow slower than expected
for a number of reasons, including technical obstacles to
efficiency increases, supply chain disruptions, or reduced
willingness to spend.

• Current scaling laws could be wrong, as has happened in
the past9. Even if there is no additional increase in data
efficiency, perhaps there are better ways of scaling that
use less data.

• Multimodal models might prove to perform better than
models with a single modality via transfer learning. This
would effectively increase the data stock to encompass a
combination of the stocks of all data modalities.

In addition, there are some limitations in our estimates of
the stock of data:

• The use of synthetic data could make the stock of data
virtually infinite. We are uncertain about the usefulness
and cost of synthetic data for training.

9In [2] the authors recommended increasing the training dataset size fivefold
for each tenfold increase in compute. In the more recent [3], they revisit the
problem and recommend instead increasing the training dataset size threefold
for each tenfold increase in compute.



(a) Comparison of the different data stock
models.

(b) Aggregated data stock model. (c) Projection of historical trend of training
dataset sizes and available data stock.

Fig. 3: Models of low-quality language data.

• Big economic shifts might significantly impact the pro-
duction of data. For example, large-scale adoption of self-
driving cars would result in an unprecedented amount of
road video recordings.

• Similarly, actors with big budgets (such as governments
or large corporations) might be able to increase the
production of data with enough spending, especially in
the case of high-quality data for niche domains. Some
possibilities are widespread screen recording or mass
surveillance.

• We might find better ways to extract high-quality data
from low-quality sources, for example, by coming up with
robust automatic quality metrics.

IV. ANALYSIS

A. Trends in dataset size
Previous work [1] identified the historical rate of growth

for training datasets in different domains. Since there is only
significant data for the language and vision domains, we
will limit our analysis to those two domains. The trends are
summarized in Table I.

Domain Doubling time median and
CI (months)

Largest training
dataset (datapoints)

Language 15.8 [11.2; 20.9] 2e12
Vision 41.5 [30.4; 48.3] 3e9

TABLE I: Trends in training dataset size for vision and
language models.

B. Language
1) Low-quality data

We have used five different models to estimate the amount
of data and the accumulation rate. Table II summarizes these
different models, which are further illustrated in Figure 3a
and explained in more detail in Appendix A. The aggregated
model finds an estimated current total stock between 6.9e13
and 7.1e16 words, and current growth between 6.41% and
17.49% per year.

Note that the high end of this estimate comes from two
highly theoretical models that we trust the least. The way
we interpret this range is: 1e14 words is what is very likely
available to single, well-funded actors such as Google; 1e15
words is what is available to the combined group of all major
actors (all tech companies); 1e16 words is what humanity
might be able to collectively produce with a worldwide,
multiyear effort, employing practices such as recording all text
messages, phone calls and video meetings, practices which are
currently very far outside the Overton window.

Using the aggregated data stock model as an upper bound
for scaling datasets, we project the size of training datasets and
find that it grows rapidly until it exhausts the stock of data.
After this point, growth slows down substantially (Figure 3c).

Model Stock of data (#words) Growth rate

Recorded speech
1.46e17 5.2%
[3.41e16; 4.28e17] [4.95%; 5.2%]

Internet users
2.01e15 8.14%
[6.47e14; 6.28e15] [7.89%; 8.14%]

Popular platforms
4.41e14 8.14%
[1.21e14; 1.46e15] [7.89%; 8.14%]

CommonCrawl
9.62e13 16.68%
[4.45e13; 2.84e14] [16.41%; 16.68%]

Indexed websites
2.21e14

NA
[5.16e13; 6.53e15]

Aggregated model
7.41e14 7.15%
[6.85e13; 7.13e16] [6.41%; 17.49%]

TABLE II: Median and 90% CI of estimates of high-quality
language data accumulation.

2) High-quality data
We studied high-quality data by looking at the composition

of several high-quality datasets and determining how much
each component can be scaled. We considered three datasets:
The Pile [13], MassiveText [3], and the PaLM pretraining
dataset [15].

From these, we can see that high-quality datasets are usually



(a) Composition of high-quality datasets: The
Pile (left), PaLM (top-right), MassiveText
(bottom-right)

(b) Data stock model. (c) Projection of historical trend of training
dataset sizes and available data stock.

Fig. 4: Models of high-quality language data.

composed of 50% scraped user-generated content (Pile-CC,
OpenWebText2, social media conversations, filtered webpages,
MassiveWeb, C4), 15-20% books, 10-20% scientific papers,
<10% code and <10% news. In addition, they all incorporate
known small very-high-quality datasets like Wikipedia (Fig-
ure 4a).

We estimated the amount of available text in digitized
books, public GitHub repositories, and scientific papers. As-
suming all of these form between 30% to 50% of a hypotheti-
cal high-quality dataset, we could reach 9e12 [4.6e12; 1.7e13]
words. We assume the amount of high-quality data grows at
4-5% per year in line with the world economy, as explained
in the Introduction (see Figure 4b). Details of the model can
be found in Appendix A.

Projecting the growth of language datasets using the high-
quality stock instead of the low-quality stock as an upper
bound, we find the same pattern of slowdown, with the
distinction that the slowdown happens much earlier, before
2026 (Figure 4c).

C. Vision
We used two different estimates for vision: one produced by

Rise Above Research [20], and one using the combined images
and videos posted to the most popular social media platforms.
The aggregated model shows there are between 8.11e12 and
2.3e13 images on the internet today, with the current yearly
growth rate around 8%. The models are summarized in Ta-
ble III and Figure 5a.

Using the aggregated data stock model as an upper bound
for scaling datasets, we project the size of training datasets
from both the historical trend and the compute-optimal extrap-
olation. The historical projection is very uncertain since we do
not yet know if the recent high outliers indicate a new higher-
growth trend. The compute projection is also more uncertain
than the corresponding projection for language because we do
not have a great understanding of scaling laws for vision10.

10This is because images can have different resolutions, so image tokeniza-
tion is more variable than text tokenization.

Similarly to the case of language, dataset sizes grow expo-
nentially until reaching the size of the data stock, at which
point they revert to a much slower rate of growth (Figure 5c).

We do not understand the impact of data quality for unla-
beled vision data and how to distinguish high-quality data, so
we did not attempt to estimate it.

Model Stock of data (#images) Growth rate

Popular platforms
9.48e12 8.14%
[5.02e12 ; 1.79e13] [7.89% ; 8.14%]

External estimate
1.28e12 8.14%
[6.5e11 ; 2.58e12] [7.89% ; 8.14%]

Aggregated model
4.36e12 8.14%
[8.11e12 ; 2.3e13] [7.89% ; 8.14%]

TABLE III: Summary of estimates of image data accumula-
tion. The bottom row contains an aggregate of all the models.

D. Will data become a bottleneck?
So far we have found that data stocks grow much slower

than training dataset sizes (see Figures 3c, 4c, and 5c). This
means that exhausting our data stocks is inevitable if current
trends continue. In addition, the high-quality data stock is
much smaller than the low-quality stock. The two dataset size
projections, based on historical trends and compute availability
extrapolations, are very similar in the first years, but later
diverge.

We computed the probability that exhaustion will happen
each year for each of our projections of data stock and dataset
size (Figure 6). While there is significant uncertainty in the
exhaustion dates for low-quality language and vision stocks,
it seems unlikely that it will happen before 2030 or after 2060.
However, the high-quality language stock will almost surely be
exhausted before 2027 if current trends continue. The quantiles
for these distributions are shown in Table IV.

[2023.55, 2024.5, 2025.75]



(a) Comparison of data stock models. (b) Aggregated data stock model. (c) Projection of historical trend of training
dataset sizes and available data stock.

Fig. 5: Models of vision data.

Fig. 6: Distribution of exhaustion dates for each intersection of the
data availability trend and data consumptiin trend. Note that the time
scale is different for each kind of data.

Historical projection Compute projection

Low-quality language
stock

2032.4
[2028.4 ; 2039.2]

2040.5
[2034.6 ; 2048.9]

High-quality
language stock

2024.5
[2023.55 ; 2025.75]

2024.1
[2023.2 ; 2025.3]

Vision stock 2046
[2037 ; 2062.8]

2038.8
[2032.0 ; 2049.8]

TABLE IV: Median and 90% CI of exhaustion year for each
of the intersections.

V. DISCUSSION

Scaling laws for language models indicate that scaling is
dependent on the amount of available data [3, 8]. Under this
view, around half of the improvement in language models over

the past four years comes from training them on more data.
Without further room to scale datasets, this would lead to a
slowdown in AI progress.

The accumulation rate of data for both language and vision
models is much slower than the growth in dataset size that we
have observed so far, both historically and taking compute
constraints into account. As a consequence, we might be
headed for a bottleneck in training data. This would happen
between 2030 and 2040 for language models and between
2030 and 2060 for image models (Figure 6).

This is particularly true for high-quality language data,
which seems likely to be exhausted by 2027. It is unclear
whether large enough datasets can substitute for poor data
quality, but even if this is the case, it would not be enough
to completely avoid the slowdown, since our ability to scale
training datasets is also limited by compute availability.

Given these projections, it might be tempting to conclude
that a slowdown is inevitable. However, we have significant
reasons to believe that our models are not adequately capturing
the evolution of ML progress (see Limitations).

In particular, the future evolution of data efficiency and the
impact of data quality on performance are crucial to predict
future data requirements. Unfortunately, our understanding of
these variables is insufficient to provide detailed forecasts.
Future work could try to incorporate these considerations into
the analysis.

VI. CONCLUSION

We have projected the growth of training dataset sizes
and data stocks. Data stocks grow at a much slower pace
than dataset sizes, so if current trends continue, datasets will
eventually stop growing due to data exhaustion. Our models
show this is likely to happen between 2030 and 2040 for
language data, and between 2030 and 2060 for vision data.
In addition, high-quality language data will be exhausted by
2026.

If our assumptions are correct, data will become the main
bottleneck for scaling ML models, and we might see a slow-
down in AI progress as a result. However, as outlined, there



are multiple reasons to doubt that these trends will continue
as projected, such as the possibility of algorithmic innovations
in data efficiency.
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APPENDIX

A. Appendix A: Models of language data accumulation
In this Appendix we provide a brief overview of the models

and the sources for their parameters. The full code is available
in https://github.com/epoch-research/data-stock.
1) Total recorded human speech

Consider the amount of raw speech generated by humans.
Assume each person pronounces or writes between 5k and
20k words per day.11 Supoosing that between 0.5% and 50%
of those words are digitally recorded12, then the production
of words per person-year would be between 160k and 2.6M.
Multiplying this by the number of person-years (the integral
of the population size) over a given period we can get the total
production of words.
2) Total text produced by internet users

As described in the introduction, the amount of text up-
loaded to the internet can be modeled as a product of three
factors:

• Human population
• Internet penetration
• Amount of text generated in a year by the average internet

user

Assume the third factor is constant over time and its value
is between 10k and 100k words per year.13 Then we can
fit a sigmoid to internet penetration data, and use existing
human population projections as approximations for the first
two factors. The product of those three is the total stock.
3) Popular platforms

In an unspecified recent year, around 500 hours of video
were uploaded to YouTube each minute.14 Assuming between
5% and 50% of those contain speech, and 9k words per hour,15

we get that between 130B and 1.3T words are uploaded to
YouTube per year.

Since 2012 there have been around 500M tweets per day.16

Assuming between 10 and 50 words per tweet, Twitter pro-
duces 2-20T words each year.

Several sources estimate the number of daily published blog
posts to be around 7.5M.17 Assuming an average blog post

11This corresponds to talking for 30 minutes and 2 hours at 150wpm,
respectively. This study (https://doi.org/10.1126/science.1139940) found an
average of 16000 words per day, with a standard deviation of 7300.

12That is, they are processed by a digital device, be it in a phone
conversation, text messages or video meetings.

13Professional writers can write a book of 100k words in half a year, and
sending 5 text messages per day with ten words each already produces almost
20k words.

14This is an old figure from a few years ago that YouTube published in
their blog. Can also be found on Statista. Plausibly higher nowadays, maybe
up to 800h.

15150 words per minute for 60 minutes.
16Source: https://www.internetlivestats.com/twitter-statistics/. Outdated,

could be a bit higher today
17This number is repeated over the internet, and it’s consistent with a single-

digit percentage of the world population posting one blog post a week. An
example source is https://www.websiterating.com/research/internet-statistics-
facts/#chapter-3.

https://epochai.org/blog/trends-in-training-dataset-sizes
https://epochai.org/blog/trends-in-training-dataset-sizes
https://epochai.org/blog/projecting-compute-trends
https://epochai.org/blog/projecting-compute-trends


length of 100-1000 words,18 in a single year between 0.2T
and 2T words are produced.

Adding all of those, and assuming they account for between
5% and 40% of the whole internet, between 8.9T and 110T
words are produced per year. Multiplying this by the number
of internet users normalized to 2022 and integrating, we get
the stock at any given year.
4) Indexed websites

The indexed web size has been roughly constant in size
at tens of billions of websites19. Assuming between 500 and
50k words per website, this means the indexed web contains
between 1e13 and 1e15 words.
5) CommonCrawl

CommonCrawl releases monthly crawls which for the past
four years have contained 5-10TB of compressed plaintext.20

Half of the URLs in each monthly crawl are visited for the
first time, so let’s assume around half of the plaintext is new
data. Assuming a compression rate for English between 30%
and 85%, the new total yearly amount of uncompressed text
is 160TB. At 200M words per GB of text, CommonCrawl
produces between 8.3e12 and 4.4e13 words per year.
6) High-quality data

a) Code

In 2020, GitHub archived 21TB of public repositories in
the Arctic Vault. Software Heritage has archived 13B source
code files. Assuming each of them is 5KB,21 this gives 65TB
of code. So the size of GitHub in 2022 is reasonably between
21TB and 65TB.

The size of a git repository includes all the blobs used for
storing the history of the repository. This storage overhead
ranges from 100% for a one-year-old repo with <100 commits
up to 600% for a very old repository like the Linux kernel.
In the MassiveText dataset, the overhead is 3.1TB / 844GB -
1 = 267%. This means that approximately 1/4 of the size is
actual source code.

It’s not clear how much code constitutes a “word,” but to
be consistent with natural language we’ll take a TB of code
to be 200B “words.” Note that tokenizers usually have worse
compression rates for code than natural text,22 so the size in
tokens will be larger than in “words.” In total this is between
320B and 4.2T words.

b) Papers

In 2014, there were an estimated 114M English scientific
articles on the web.23 The Web of Science lists 82M papers

18CommonCrawl documents have around this length, this can be seen in
the ’Mean Document Size’ column on Table 1 of the The Pile paper. It is
also easy to find claims on the internet that the optimal blog post size to get
more engagement is 1000 words.

19According to estimates from https://www.worldwidewebsize.com/
20Example: https://commoncrawl.org/2022/07/june-july-2022-crawl-

archive-now-available/
215KB is the average for GitHub, this can be seen from The Pile and

MassiveText.
2250% vs 80% in the case of the Gopher tokenizer.
23Source: https://journals.plos.org/plosone/article?id=10.1371/

journal.pone.0093949

in total, with 55M published before 2014. Assuming the
coverage of Web of Science is constant over time, the total
number of papers has increased by 50% since.24 This means
today there are up to 114M*1.5 = 170M papers.

Average paper length is 6k words,25 so we get between
600B and 1T words.

c) Books

1M books were published yearly as of 1996 (How much
information, 1996). At 4% yearly growth, for 25 years, this is
2.6M published yearly today. But I don’t trust this estimate.
Other unreliable Internet sources claim between 500k and 4M
books published per year.

It’s not clear which fraction of published books is digitized.
E-book sales are around 10% those of print books,26 so this
seems like a reasonable guess. Another source estimated that
there were 3.4M ebooks and 48.5M print books on Amazon a
few years ago.27 So the fraction of digitized books is probably
between 2% and 20%.

Using the estimate of yearly publishing and assuming
exponential economic growth, the stock of books is the yearly
published books divided by the logarithm of the growth rate.

We also have a direct estimate of the stock in 2022: there
are 12M ebooks in Amazon kindle,28 and the Internet Archive
has 20M books in its digital library.29 So the number of ebooks
is probably between 10M and 30M.

Taking the average of these two estimates and a length of
100k words per book, we get between 620B and 1.8T words.

d) Total

Assuming books, papers and code represent between 30%
and 50% of high-quality data (as found in current datasets) and
exponential growth of 4%, we get the estimate of the stock of
high-quality data.

Appendix B: Models of vision data accumulation
In this Appendix we provide a brief overview of the models

and the sources for their parameters. The full code is available
in https://github.com/epoch-research/data-stock.
7) Popular platforms

If we count one second of YouTube video as a single image
and assume 10% to 50% of hours contain usable images (not
a still background, etc), then the number of images uploaded
to YouTube in 2022 is between 120B and 620B.30

24This translates to a yearly growth of 4.5%, which matches our expecta-
tions.

25From the Pile paper. Mean document length is 30KB, so 30*200 words.
26Source: https://www.cnbc.com/2019/09/19/physical-books-still-outsell-e-

books-and-heres-why.html
27Source: https://justpublishingadvice.com/how-many-kindle-ebooks-are-

there
28Source: https://justpublishingadvice.com/how-many-kindle-ebooks-are-

there/#2022_Update_and_new_methodology
29Source: https://archive.org/details/texts
30Using the figure of 500h of video uploaded per minute found in the

popular platforms model for language data.



Fig. 7: Monthly user submissions to Reddit, in linear scale(up) and
log scale(down). While the three functions appear to fit the data well
in the log scale, the linear plot shows that the sigm*exp function
predicts much better the recent years.

In 2015, the number of pictures shared daily on Instagram
+ Snapchat + WhatsApp + Facebook was around 3.2B.31

Extrapolating that to the current year, the number is probably
between 5B and 20B. A single image might be shared on
average between 5 and 15 times, so dividing by that we get
between 170B and 1T images per year published on social
media.

Taking the sum of those two estimates and assuming the
yearly production grows in proportion to the internet popula-
tion, we get the estimate of the total stock.
8) External estimate

This estimate was produced by Rise Apart Research. The
number of images in 2022 is between 5e10 and 2e11.32 We
extrapolate this stock by assuming it is proportional to the
number of person-years on the internet.

B. Appendix C: Test of the theoretical growth model
We check our theoretical model of data accumulation rates

developed in the Methods section on Reddit submission data.
The combined sigmoid times exponential function fits the
monthly submission history better than either sigmoid or
exponential functions alone (Figure 7).

31Page 90 of this report: https://www.kleinerperkins.com/perspectives/2016-
internet-trends-report/.

32Numbers found here: https://photutorial.com/photos-statistics/, primary
source here: https://riseaboveresearch.com/rar-reports/2021-worldwide-image-
capture-forecast-2020-2025/ (paywalled commercial research)
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